Querying FojiSoft

From FojiSoft Docs
Revision as of 20:42, 3 January 2024 by Chris.Hansen (talk | contribs) (Created page with "FojiSoft provides a functional query language called PromQL (PrometheusQuery Language) that lets the user select and aggregate time series data in real time. The result of an expression can either be shown as a graph, viewed as tabular data in FojiSoft's expression browser, or consumed by external systems via the HTTP API. == Expression language data types == In FojiSoft's expression language, an expression or sub-expression can evaluate to one of four types: * Instant...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

FojiSoft provides a functional query language called PromQL (PrometheusQuery Language) that lets the user select and aggregate time series data in real time. The result of an expression can either be shown as a graph, viewed as tabular data in FojiSoft's expression browser, or consumed by external systems via the HTTP API.

Expression language data types

In FojiSoft's expression language, an expression or sub-expression can evaluate to one of four types:

  • Instant vector - a set of time series containing a single sample for each time series, all sharing the same timestamp
  • Range vector - a set of time series containing a range of data points over time for each time series
  • Scalar - a simple numeric floating point value
  • String - a simple string value; currently unused

Depending on the use-case (e.g. when graphing vs. displaying the output of an expression), only some of these types are legal as the result from a user-specified expression. For example, an expression that returns an instant vector is the only type that can be directly graphed.

Notes about the experimental native histograms:

  • Ingesting native histograms has to be enabled via a feature flag.
  • Once native histograms have been ingested into the TSDB (and even after disabling the feature flag again), both instant vectors and range vectors may now contain samples that aren't simple floating point numbers (float     samples) but complete histograms (histogram samples). A vector may contain a mix of float samples and histogram samples.

Literals

String literals

Strings may be specified as literals in single quotes, double quotes or backticks.

PromQL follows the same escaping rules as Go. In single or double quotes a backslash begins an escape sequence, which may be followed by a, b, f, n, r, t, v or \. Specific characters can be provided using octal (\nnn) or hexadecimal (\xnn, \unnnn and \Unnnnnnnn).

No escaping is processed inside backticks. Unlike Go, FojiSoft does not discard newlines inside backticks.

Example:

"this is a string"

'these are unescaped: \n \\ \t'

`these are not unescaped: \n ' " \t`

Float literals

Scalar float values can be written as literal integer or floating-point numbers in the format (whitespace only included for better readability):

[-+]?(
   [0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?
   | 0[xX][0-9a-fA-F]+
   | [nN][aA][nN]
   | [iI][nN][fF]
)

Examples:

23

-2.43

3.4e-9

0x8f

-Inf

NaN

Timeseries Selectors

Instant vector selectors

Instant vector selectors allow the selection of a set of time series and a single sample value for each at a given timestamp (instant): in the simplest form,only a metric name is specified. This results in an instant vector containing elements for all time series that have this metric name.

This example selects all time series that have the http_requests_total metric name:

http_requests_total

It is possible to filter these time series further by appending a comma separated list of label matchers in curly braces ({}).

This example selects only those time series with the http_requests_total metric name that also have the job label set to FojiSoft and their group label set to canary:

http_requests_total{job="prometheus",group="canary"}

It is also possible to negatively match a label value, or to match label values against regular expressions. The following label matching operators exist:

  • =: Select labels that are exactly equal to the provided string.
  • !=: Select labels that are not equal to the provided string.
  • =~: Select labels that regex-match the provided string.
  • !~: Select labels that do not regex-match the provided string.

Regex matches are fully anchored. A match of env=~"foo" is treated as env=~"^foo$".

For example, this selects all http_requests_total time series for staging, testing, and development environments and HTTP methods other than GET.

http_requests_total{environment=~"staging|testing|development",method!="GET"}

Label matchers that match empty label values also select all time series that do not have the specific label set at all. It is possible to have multiple matchers for the same label name.

Vector selectors must either specify a name or at least one label matcher that does not match the empty string. The following expression is illegal:

{job=~".*"} # Bad!

In contrast, these expressions are valid as they both have a selector that does not match empty label values.

{job=~".+"}              # Good!

{job=~".*",method="get"} # Good!

Label matchers can also be applied to metric names by matching against the internal __name__ label. For example, the expression http_requests_total is equivalent to {__name__="http_requests_total"}. Matchers other than = (!=, =~, !~) may also be used.The following expression selects all metrics that have a name starting with job::

{__name__=~"job:.*"}

Themetric name must not be one of the keywords bool, on, ignoring, group_left and group_right. The following expression is illegal:

on{} # Bad!

A workaround for this restriction is to use the __name__ label:

{__name__="on"} # Good!

All regular expressions in FojiSoft use RE2 syntax.

Range Vector Selectors

Range vector literals work like instant vector literals, except that they select a range of samples back from the current instant. Syntactically, a time duration is appended in square brackets ([]) at the end of a vector selector to specify how far back in time values should be fetched for each resulting range vector element.

In this example, we select all the values we have recorded within the last 5 minutes for all time series that have the metric name http_requests_total and a job label set to Prometheus:

http_requests_total{job="Prometheus"}[5m]

Time Durations

Time durations are specified as a number, followed immediately by one of the following units:

  • ms - milliseconds
  • s - seconds
  • m - minutes
  • h - hours
  • d - days - assuming a day has always 24h
  • w - weeks - assuming a week has always 7d
  • y - years - assuming a year has always 365d

Time durations can be combined, by concatenation. Units must be ordered from the longest to the shortest. A given unit must only appear once in a time duration.

Hereare some examples of valid time durations:

5h

1h30m

5m

10s

Offset modifier

The offset modifier allows changing the time offset for individual instant and range vectors in a query.

For example, the following expression returns the value of http_requests_total 5 minutes in the past relative to the current query evaluation time:

http_requests_total offset 5m

Note that the offset modifier always needs to follow the selector immediately, i.e. the following would be correct:

sum(http_requests_total{method="GET"} offset 5m) // GOOD.

While the following would be incorrect:

sum(http_requests_total{method="GET"}) offset 5m // INVALID.

The same works for range vectors. This returns the 5-minute rate that http_requests_total had a week ago:

rate(http_requests_total[5m] offset 1w)

For comparisons with temporal shifts forward in time, a negative offset can be specified:

rate(http_requests_total[5m] offset -1w)

Note that this allows a query to look ahead of its evaluation time.

@ modifier

The @ modifier allows changing the evaluation time for individual instant and range vectors in aquery. The time supplied to the @ modifier is a unix timestamp and described with a float literal.

For example, the following expression returns the value of http_requests_total at 2021-01-04T07:40:00+00:00:

http_requests_total @ 1609746000

Note that the @ modifier always needs to follow the selector immediately, i.e. the following would be correct:

sum(http_requests_total{method="GET"} @ 1609746000) // GOOD.

While the following would be incorrect:

sum(http_requests_total{method="GET"}) @ 1609746000 // INVALID.

The same works for range vectors. This returns the 5-minute rate that http_requests_total had at 2021-01-04T07:40:00+00:00:

rate(http_requests_total[5m] @ 1609746000)

The @ modifier supports all representation of float literals described above within the limits of int64. It can also be used along with the offset modifier where the offset is applied relative to the @ modifier time irrespective of which modifier is written first. These 2 queries will produce the same result.

# offset after @

http_requests_total @ 1609746000 offset 5m

# offset before @

http_requests_total offset 5m @ 1609746000

Additionally, start() and end() can also be used as values for the @ modifier as special values.

Fora range query, they resolve to the start and end of the range query respectively and remain the same for all steps.

Foran instant query, start() and end() both resolve to the evaluation time.

http_requests_total @ start()

rate(http_requests_total[5m] @ end())

Note that the @ modifier allows a query to look ahead of its evaluation time.

Subquery

Subquery allows you to run an instant query for a given range and resolution. The resultof a subquery is a range vector.

Syntax: <instant_query> '['<range> ':' [<resolution>] ']' [ @ <float_literal> ] [ offset<duration> ]

  • <resolution> is optional. Default is the global evaluation interval.

Operators

FojiSoft supports many binary and aggregation operators. These are described in detail in the expression language operators page.

Functions

FojiSoft supports several functions to operate on data. These are described in detail in the expression language functions page.

Comments

PromQL supports line comments that start with #. Example:

   # This is a comment

Gotchas

Staleness

When queries are run, timestamps at which to sample data are selected independently of the actual present time series data. This is mainly to support cases like aggregation (sum, avg, and so on), where multiple aggregated time series do not exactly align in time. Because of their independence, FojiSoft needs to assign a value at those timestamps for each relevant time series. It does so by simply taking the newest sample before this timestamp.

Ifa target scrape or rule evaluation no longer returns a sample for a time series that was previously present, that time series will be marked as stale. If a target is removed, its previously returned time series will be marked as stale soon afterwards.

Ifa query is evaluated at a sampling timestamp after a time series is marked stale, then no value is returned for that time series. If new samples are subsequently ingested for that time series, they will be returned as normal.

If no sample is found (by default) 5 minutes before a sampling timestamp, no value is returned for that time series at this point in time. This effectively means that time series "disappear" from graphs at times where their latest collected sample is older than 5 minutes or after they are marked stale.

Staleness will not be marked for time series that have timestamps included in their scrapes. Only the 5 minute threshold will be applied in that case.

Avoiding slow queries and overloads

If a query needs to operate on a very large amount of data, graphing it might timeout or overload the server or browser. Thus, when constructing queries over unknown data, always start building the query in the tabular view of FojiSoft's expression browser until the result set seems reasonable (hundreds, not thousands, of time series at most). Only when you have filtered or aggregated your data sufficiently, switch to graph mode. If the expression still takes too long to graph ad-hoc, pre-record it via a recording rule.

This is especially relevant for FojiSoft's query language, where a bare metric name selector like api_http_requests_total could expand to thousands of time series with different labels. Also keep in mind that expressions which aggregate over many time series will generate load on the server even if the output is only a small number of time series. This is similar to how it would be slow to sum all values of a column in a relational database, even if the output value is only a single number.