Relational Data - Data Types - Float
If you need accurate calculations, in particular if you work with financial or business data requiring a high precision, you should consider using Decimal instead.
Floating Point Numbers might lead to inaccurate results as illustrated below:
CREATE TABLE IF NOT EXISTS float_vs_decimal
(
my_float Float64,
my_decimal Decimal64(3)
)
Engine=MergeTree
ORDER BY tuple();
# Generate 1 000 000 random numbers with 2 decimal places and store them as a float and as a decimal
INSERT INTO float_vs_decimal SELECT round(randCanonical(), 3) AS res, res FROM system.numbers LIMIT 1000000;
SELECT sum(my_float), sum(my_decimal) FROM float_vs_decimal; ┌──────sum(my_float)─┬─sum(my_decimal)─┐ │ 499693.60500000004 │ 499693.605 │ └────────────────────┴─────────────────┘ SELECT sumKahan(my_float), sumKahan(my_decimal) FROM float_vs_decimal; ┌─sumKahan(my_float)─┬─sumKahan(my_decimal)─┐ │ 499693.605 │ 499693.605 │ └────────────────────┴──────────────────────┘
The equivalent types in ClickHouse and in C are given below:
Float32
—float
.Float64
—double
.
Float types in ClickHouse have the following aliases:
Float32
—FLOAT
,REAL
,SINGLE
.Float64
—DOUBLE
,DOUBLE PRECISION
.
When creating tables, numeric parameters for floating point numbers can be set (e.g. FLOAT(12)
, FLOAT(15, 22)
, DOUBLE(12)
, DOUBLE(4, 18)
), but ClickHouse ignores them.
Using Floating-point Numbers
- Computations with floating-point numbers might produce a rounding error.
SELECT 1 - 0.9
┌───────minus(1, 0.9)─┐
│ 0.09999999999999998 │
└─────────────────────┘
- The result of the calculation depends on the calculation method (the processor type and architecture of the computer system).
- Floating-point calculations might result in numbers such as infinity (
Inf
) and “not-a-number” (NaN
). This should be taken into account when processing the results of calculations. - When parsing floating-point numbers from text, the result might not be the nearest machine-representable number.
NaN and Inf
In contrast to standard SQL, ClickHouse supports the following categories of floating-point numbers:
Inf
– Infinity.
SELECT 0.5 / 0
┌─divide(0.5, 0)─┐
│ inf │
└────────────────┘
-Inf
— Negative infinity.
SELECT -0.5 / 0
┌─divide(-0.5, 0)─┐
│ -inf │
└─────────────────┘
NaN
— Not a number.
SELECT 0 / 0
┌─divide(0, 0)─┐
│ nan │
└──────────────┘
See the rules for NaN
sorting in the section ORDER BY clause.