Relational Data - Functions - Math Functions
e
Returns (Euler’s constant).
Syntax
e()
Returned value
Type: Float64.
pi
Returns (Pi).
Syntax
pi()
Returned value
Type: Float64.
exp
Returns , where x is the given argument to the function.
Syntax
exp(x)
Arguments
Example
Query:
SELECT round(exp(-1), 4);
Result:
┌─round(exp(-1), 4)─┐ │ 0.3679 │ └───────────────────┘
Returned value
Type: Float*.
log
Returns the natural logarithm of the argument.
Syntax
log(x)
Alias: ln(x)
Arguments
Returned value
Type: Float*.
exp2
Returns 2 to the power of the given argument
Syntax
exp2(x)
Arguments
Returned value
Type: Float*.
intExp2
Like exp
but returns a UInt64.
Syntax
intExp2(x)
log2
Returns the binary logarithm of the argument.
Syntax
log2(x)
Arguments
Returned value
Type: Float*.
exp10
Returns 10 to the power of the given argument.
Syntax
exp10(x)
Arguments
Returned value
Type: Float*.
intExp10
Like exp10
but returns a UInt64.
Syntax
intExp10(x)
log10
Returns the decimal logarithm of the argument.
Syntax
log10(x)
Arguments
Returned value
Type: Float*.
sqrt
Returns the square root of the argument.
sqrt(x)
Arguments
Returned value
Type: Float*.
cbrt
Returns the cubic root of the argument.
cbrt(x)
Arguments
Returned value
Type: Float*.
erf
If x
is non-negative, then is the probability that a random variable having a normal distribution with standard deviation takes the value that is separated from the expected value by more than x
.
Syntax
erf(x)
Arguments
Returned value
Type: Float*.
Example
(three sigma rule)
SELECT erf(3 / sqrt(2));
┌─erf(divide(3, sqrt(2)))─┐ │ 0.9973002039367398 │ └─────────────────────────┘
erfc
Returns a number close to without loss of precision for large x
values.
Syntax
erfc(x)
Arguments
Returned value
Type: Float*.
lgamma
Returns the logarithm of the gamma function.
Syntax
lgamma(x)
Arguments
Returned value
Type: Float*.
tgamma
Returns the gamma function.
Syntax
gamma(x)
Arguments
Returned value
Type: Float*.
sin
Returns the sine of the argument
Syntax
sin(x)
Arguments
Returned value
Type: Float*.
Example
Query:
SELECT sin(1.23);
0.9424888019316975
cos
Returns the cosine of the argument.
Syntax
cos(x)
Arguments
Returned value
Type: Float*.
tan
Returns the tangent of the argument.
Syntax
tan(x)
Arguments
Returned value
Type: Float*.
asin
Returns the arc sine of the argument.
Syntax
asin(x)
Arguments
Returned value
Type: Float*.
acos
Returns the arc cosine of the argument.
Syntax
acos(x)
Arguments
Returned value
Type: Float*.
atan
Returns the arc tangent of the argument.
Syntax
atan(x)
Arguments
Returned value
Type: Float*.
pow
Returns .
Syntax
pow(x, y)
Alias: power(x, y)
Arguments
x
- (U)Int8/16/32/64, Float* or Decimal*y
- (U)Int8/16/32/64, Float* or Decimal*
Returned value
Type: Float64.
cosh
Returns the hyperbolic cosine of the argument.
Syntax
cosh(x)
Arguments
x
— The angle, in radians. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle 1 \le cosh(x) \lt +\infty} .
Type: Float64.
Example
SELECT cosh(0);
Result:
┌─cosh(0)──┐ │ 1 │ └──────────┘
acosh
Returns the inverse hyperbolic cosine.
Syntax
acosh(x)
Arguments
x
— Hyperbolic cosine of angle. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle 1 \le x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- The angle, in radians. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle 0 \le acosh(x) \lt +\infty} .
Type: Float64.
Example
SELECT acosh(1);
Result:
┌─acosh(1)─┐ │ 0 │ └──────────┘
sinh
Returns the hyperbolic sine.
Syntax
sinh(x)
Arguments
x
— The angle, in radians. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt sinh(x) \lt +\infty} .
Type: Float64.
Example
SELECT sinh(0);
Result:
┌─sinh(0)──┐ │ 0 │ └──────────┘
asinh
Returns the inverse hyperbolic sine.
Syntax
asinh(x)
Arguments
x
— Hyperbolic sine of angle. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- The angle, in radians. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt asinh(x) \lt +\infty} .
Type: Float64.
Example
SELECT asinh(0);
Result:
┌─asinh(0)─┐ │ 0 │ └──────────┘
tanh
Returns the hyperbolic tangent.
Syntax
tanh(x)
Arguments
x
— The angle, in radians. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -1 \lt tanh(x) \lt 1} .
Type: Float*.
Example
SELECT tanh(0);
Result:
0
atanh
Returns the inverse hyperbolic tangent.
Syntax
atanh(x)
Arguments
x
— Hyperbolic tangent of angle. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -1 \lt x \lt 1} . (U)Int*, Float* or Decimal*.
Returned value
- The angle, in radians. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt atanh(x) \lt +\infty} .
Type: Float64.
Example
SELECT atanh(0);
Result:
┌─atanh(0)─┐ │ 0 │ └──────────┘
atan2
Returns the atan2 as the angle in the Euclidean plane, given in radians, between the positive x axis and the ray to the point (x, y) ≠ (0, 0)
.
Syntax
atan2(y, x)
Arguments
y
— y-coordinate of the point through which the ray passes. (U)Int*, Float* or Decimal*.x
— x-coordinate of the point through which the ray passes. (U)Int*, Float* or Decimal*.
Returned value
- The angle
θ
such that Failed to parse (unknown function "\lt"): {\textstyle -\pi \lt 0 \le \pi} , in radians.
Type: Float64.
Example
SELECT atan2(1, 1);
Result:
┌────────atan2(1, 1)─┐ │ 0.7853981633974483 │ └────────────────────┘
hypot
Returns the length of the hypotenuse of a right-angle triangle. Hypot avoids problems that occur when squaring very large or very small numbers.
Syntax
hypot(x, y)
Arguments
x
— The first cathetus of a right-angle triangle. (U)Int*, Float* or Decimal*.y
— The second cathetus of a right-angle triangle. (U)Int*, Float* or Decimal*.
Returned value
- The length of the hypotenuse of a right-angle triangle.
Type: Float64.
Example
SELECT hypot(1, 1);
Result:
┌────────hypot(1, 1)─┐ │ 1.4142135623730951 │ └────────────────────┘
log1p
Calculates log(1+x)
. The calculation log1p(x)
is more accurate than log(1+x)
for small values of x.
Syntax
log1p(x)
Arguments
x
— Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -1 \lt x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty < log1p(x) \lt +\infty} .
Type: Float64.
Example
SELECT log1p(0);
Result:
┌─log1p(0)─┐ │ 0 │ └──────────┘
sign
Returns the sign of a real number.
Syntax
sign(x)
Arguments
x
— Values from to . Supports all numeric types in ClickHouse.
Returned value
- -1 for
x < 0
- 0 for
x = 0
- 1 for
x > 0
Type: Int8.
Examples
Sign for the zero value:
SELECT sign(0);
Result:
┌─sign(0)─┐ │ 0 │ └─────────┘
Sign for the positive value:
SELECT sign(1);
Result:
┌─sign(1)─┐ │ 1 │ └─────────┘
Sign for the negative value:
SELECT sign(-1);
Result:
┌─sign(-1)─┐ │ -1 │ └──────────┘
sigmoid
Returns the sigmoid function.
Syntax
sigmoid(x)
Parameters
x
— input value. Values from the interval: Failed to parse (unknown function "\lt"): {\textstyle -\infty \lt x \lt +\infty} . (U)Int*, Float* or Decimal*.
Returned value
- Corresponding value along the sigmoid curve between 0 and 1. Float64.
Example
Query:
SELECT round(sigmoid(x), 5) FROM (SELECT arrayJoin([-1, 0, 1]) AS x);
Result:
0.26894 0.5 0.73106
degrees
Converts radians to degrees.
Syntax
degrees(x)
Arguments
x
— Input in radians. (U)Int*, Float* or Decimal*.x
— Input in radians. (U)Int*, Float* or Decimal*.
Returned value
- Value in degrees. Float64.
Example
SELECT degrees(3.141592653589793);
Result:
┌─degrees(3.141592653589793)─┐ │ 180 │ └────────────────────────────┘
radians
Converts degrees to radians.
Syntax
radians(x)
Arguments
Returned value
- Value in radians.
Type: Float64.
Example
SELECT radians(180);
Result:
┌──────radians(180)─┐ │ 3.141592653589793 │ └───────────────────┘
factorial
Computes the factorial of an integer value. Works with any native integer type including UInt(8|16|32|64) and Int(8|16|32|64). The return type is UInt64.
The factorial of 0 is 1. Likewise, the factorial() function returns 1 for any negative value. The maximum positive value for the input argument is 20, a value of 21 or greater will cause exception throw.
Syntax
factorial(n)
Example
SELECT factorial(10);
Result:
┌─factorial(10)─┐ │ 3628800 │ └───────────────┘
width_bucket
Returns the number of the bucket in which operand
falls in a histogram having count
equal-width buckets spanning the range low
to high
. Returns 0
if operand < low
, and returns count+1
if operand >= high
.
operand
, low
, high
can be any native number type. count
can only be unsigned native integer and its value cannot be zero.
Syntax
widthBucket(operand, low, high, count)
Alias: WIDTH_BUCKET
Example
SELECT widthBucket(10.15, -8.6, 23, 18);
Result:
┌─widthBucket(10.15, -8.6, 23, 18)─┐ │ 11 │ └──────────────────────────────────┘
proportionsZTest
Returns test statistics for the two proportion Z-test - a statistical test for comparing the proportions from two populations x
and y
.
Syntax
proportionsZTest(successes_x, successes_y, trials_x, trials_y, conf_level, pool_type)
Arguments
successes_x
: Number of successes in populationx
. UInt64.successes_y
: Number of successes in populationy
. UInt64.trials_x
: Number of trials in populationx
. UInt64.trials_y
: Number of trials in populationy
. UInt64.conf_level
: Confidence level for the test. Float64.pool_type
: Selection of pooling (way in which the standard error is estimated). Can be eitherunpooled
orpooled
. String.
For argument pool_type
: In the pooled version, the two proportions are averaged, and only one proportion is used to estimate the standard error. In the unpooled version, the two proportions are used separately.
Returned value
z_stat
: Z statistic. Float64.p_val
: P value. Float64.ci_low
: The lower confidence interval. Float64.ci_high
: The upper confidence interval. Float64.
Example
Query:
SELECT proportionsZTest(10, 11, 100, 101, 0.95, 'unpooled');
Result:
┌─proportionsZTest(10, 11, 100, 101, 0.95, 'unpooled')───────────────────────────────┐ │ (-0.20656724435948853,0.8363478437079654,-0.09345975390115283,0.07563797172293502) │ └────────────────────────────────────────────────────────────────────────────────────┘